IID Prophet Inequality with Random Horizon

F. Mallmann-Trenn² G. Giambartolomei² R. Saona¹

¹Institute of Science and Technology Austria (ISTA) ²King's College London

From matchings to markets 2025

Raimundo Saona IID Prophet Inequality with Random Horizon

Raimundo Saona IID Prophet Inequality with Random Horizon

Mentors

Jose Correa

Bruno Ziliotto

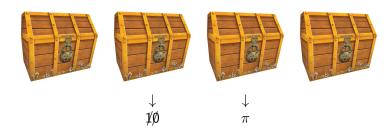
Krishnendu Chatterjee

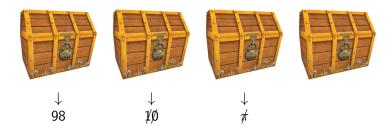
Miquel Oliu-Barton

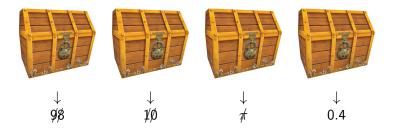
Raimundo Saona IID Prophet Inequality with Random Horizon

10

Raimundo Saona IID Prophet Inequality with Random Horizon







Consider the following random horizon.

$$H = \begin{cases} 1 & \text{w.p. } 1/2 \\ 2 & \text{w.p. } 1/4 \\ 3 & \text{w.p. } 1/20 \\ 4 & \text{w.p. } 1/5 \end{cases}$$

Consider iid positive values $X_i \sim X$. We would like to bound

cup	$\mathbb{E}(ALG)$
sup ALG	$\overline{\mathbb{E}(MAX)}$

- **1** Draw a horizon H and variables X_1, X_2, \ldots, X_H .
- 2 At each step *i*, if $i \leq H$, then observe X_i .
- Decide whether to take X_i or not.
 If you take it, the process end.
 If you do not take it, the process continuous.

A decision rule defines ALG. The benchmark is the offline maximum MAX.

Assumptions

- Finite value expectation: $\mathbb{E}(X) < \infty$
- Finite horizon expectation: $\mu := \mathbb{E}(H) < \infty$
- All variables are independent of each other
- Talk simplicity: X is a continuous distribution

Under these assumptions,

$$\mathbb{E}(MAX) \leq \mathbb{E}\left(\sum_{i=1}^{H} X_i\right) \leq \mathbb{E}(H)\mathbb{E}(X) = \mu \mathbb{E}(X) < \infty.$$

Theorem

If $H \equiv h$, then there exists a threshold $\tau \in \mathbb{R}$ such that

$$rac{\mathbb{E}(ALG_{ au})}{\mathbb{E}(MAX)} \geq \left(1 - rac{1}{e}
ight) pprox 0.632$$

and the bound is tight considering single-threshold algorithms.

In this proof, the threshold τ is defined by

$$\mathbb{P}(MAX \le \tau) = \frac{1}{e}$$

Previous Results 2

Define the Hazard rate of a random variable H by

$$\lambda(h) \coloneqq \mathbb{P}(H = h \mid H \ge h) = rac{\mathbb{P}(H = h)}{\mathbb{P}(H \ge h)}$$

taking the value 1 when it is not defined.

Theorem

If H is such that $\lambda(\cdot)$ is increasing, then there exists a threshold $\tau \in \mathbb{R}$ such that

$$rac{\mathbb{E}(ALG_{ au})}{\mathbb{E}(MAX)} \geq rac{1}{2-1/\mu}$$

and the bound is tight considering all algorithms.

In this proof, the threshold τ is defined by

$$\mathbb{P}(X \geq \tau) = \frac{1}{\mu}$$

For H with bounded support,

backward induction defines the optimal algorithm.

For *H* with **un**bounded support, backward induction is **not** defined. Because $\mathbb{E}(H) < \infty$, approximate the instance by min $\{H, n\}$. For time *i*, consider the increasing sequence of thresholds $(\tau_{i,n})_{n\geq 1}$. The optimal algorithm is given by thresholds $\tau_i^* := \lim_{n\to\infty} \tau_{i,n}$. Recall our example

$$H = \begin{cases} 1 & \text{w.p. } 1/2 \\ 2 & \text{w.p. } 1/4 \\ 3 & \text{w.p. } 1/20 \\ 4 & \text{w.p. } 1/5 \end{cases}$$

The hazard rate is given by

$$\lambda = \left[rac{1}{2}, rac{1}{2}, rac{1}{5}, 1, 1, \ldots
ight]$$

In particular, this example is **not covered** by previous results.

Theorem (Concentrated horizons)

If $\sigma^2 := Var(H) < \infty$, then there exists τ such that

$$\frac{\mathbb{E}(ALG_{\tau})}{\mathbb{E}(MAX)} \geq \frac{\mu^2}{\mu^2 + \sigma^2} \left(1 - \left(1 - \frac{1}{\mu}\right)^{\frac{\mu^2 + \sigma^2}{\mu}}\right)$$

In particular, fixing σ^2 and taking $\mu \to \infty$, we **extend** the factor the factor (1 - 1/e) from fixed to low variance horizons.

Definition (\mathcal{G} -class)

A horizon *H* is in the *G*-class if, for all $t \in (0, 1)$,

$$\mathbb{E}(t^H) = \sum_{i \ge 0} \mathbb{P}(H=i)t^i \le rac{t}{t+(1-t)\mu}$$

Theorem (Better than geometric)

If H is in the \mathcal{G} -class, then there exists τ such that

$$rac{\mathbb{E}(ALG_{ au})}{\mathbb{E}(MAX)} \geq rac{1}{2-1/\mu}\,.$$

Technique

The general proof is the following.

$$\mathbb{E}(ALG_{\tau}) = \mathbb{E}\left(1 - \mathbb{P}(X < \tau)^{H}\right) \mathbb{E}(X \mid X \ge \tau)$$

$$= \left(1 - \mathbb{E}\left(\mathbb{P}(X < \tau)^{H}\right)\right) \mathbb{E}(X \mid X \ge \tau)$$

$$\ge \left(1 - \mathbb{E}\left(\mathbb{P}(X < \tau)^{H}\right)\right) \mathbb{E}(MAX) \qquad (def. \ \tau)$$

$$\ge \left(1 - \mathbb{E}\left(\mathbb{P}(X < \tau)^{G}\right)\right) \mathbb{E}(MAX) \qquad (def. \ G)$$

$$= c_{G} \quad \mathbb{E}(MAX)$$

where c_G is a factor defined by the distribution of G and G is another random variable such that, for all $t \in (0, 1)$

$$\mathbb{E}(t^{H}) \leq \mathbb{E}(t^{G})$$

Lemma

Consider a continuous random variable X and a horizon H with expectation $\mu < \infty$. Define the the threshold τ by $\mathbb{P}(X \ge \tau) = 1/\mu$. Then,

 $\mathbb{E}(MAX) \leq \mathbb{E}(X \mid X \geq \tau)$

Note that, for all x,

 $f_{\mathrm{MAX}}(x) \leq \mu f_X(x)$.

Define the optimization problem

$$\max_{f} \int_{0}^{\infty} xf(x)dx$$

s.t. $\int_{0}^{\infty} f(x)dx \le 1$
 $f(x) \le \mu f_{X}(x) \quad \forall x$

Threshold for MAX, proof 2

Its solution is to put as much mass in high values as possible, i.e.

$$f^*(x) = \begin{cases} \mu f_X(x) & x \ge x^* \\ 0 & \sim \end{cases}$$

and the threshold x^* is given by f^* being a density, i.e., $x^* = \tau$, so that

$$\int_0^\infty f^*(x)dx = \mu \int_\tau^\infty f_X(x)dx = \mu \mathbb{P}(X \ge \tau) = 1$$

Then,

$$\mathbb{E}(\mathrm{MAX}) \leq \int_0^\infty x f^*(x) dx = \mu \int_\tau^\infty x f_X(x) dx = \mathbb{E}(X \mid X \geq \tau).$$

Definition (\mathcal{G} -class)

A horizon H is in the \mathcal{G} -class if, for all $t \in (0, 1)$,

$$\mathbb{E}(t^H) = \sum_{i \ge 0} \mathbb{P}(H=i)t^i \le rac{t}{t+(1-t)\mu}$$

Note that, if $\mathcal{G} \sim \operatorname{Geo}(1/\mu)$, then

$$\mathbb{E}(t^G) = \frac{t}{t+(1-t)\mu}.$$

The **discounted cost of a failure** $\sim H$ is less than a failure $\sim G$, for all discount factors.

The following classes of random horizons are **nested**.

- Increasing Hazard Rate (IHR)
- IHR in expectation
- Harmonically IHR in expectation
- Better New than Used (BNU)
- In expectation
- **6** Harmonically BNU in expectation
- G-class (more reliable than a geometric)

Reliable Horizon, proof

$$\begin{split} \mathbb{E}(\mathrm{ALG}_{\tau}) \\ &= \left(1 - \mathbb{E}\left(\mathbb{P}(X < \tau)^{H}\right)\right) \mathbb{E}(X \mid X \ge \tau) \\ &\geq \left(1 - \mathbb{E}\left(\mathbb{P}(X < \tau)^{H}\right)\right) \mathbb{E}(\mathrm{MAX}) \qquad (\mathsf{def. } \tau) \\ &\geq \left(1 - \mathbb{E}\left(\mathbb{P}(X < \tau)^{G}\right)\right) \mathbb{E}(\mathrm{MAX}) \qquad (H \in \mathcal{G}) \\ &= \left(1 - \frac{\mathbb{P}(X < \tau)}{\mathbb{P}(X < \tau) + (1 - \mathbb{P}(X < \tau))\mu}\right) \qquad \mathbb{E}(\mathrm{MAX}) \qquad (\mathsf{def. } G) \\ &= \left(1 - \frac{1 - 1/\mu}{1 - 1/\mu + (1 - (1 - 1/\mu))\mu}\right) \qquad \mathbb{E}(\mathrm{MAX}) \qquad (\mathsf{def. } \tau) \\ &= \left(\frac{1}{2 - 1/\mu}\right) \qquad \mathbb{E}(\mathrm{MAX}) \end{split}$$

Consider a horizon H such that $\sigma^2 \coloneqq Var(H) < \infty$. Define

$$G \sim rac{\mu^2 + \sigma^2}{\mu} \operatorname{Ber} \left(rac{\mu^2}{\mu^2 + \sigma^2}
ight)$$

Then, for all $t \in (0, 1)$,

 $\mathbb{E}(t^{H}) \leq \mathbb{E}(t^{G}).$

.

Concentrated Horizon, proof 2

$$\begin{split} \mathbb{E}(\mathrm{ALG}_{\tau}) &= \left(1 - \mathbb{E}\left(\mathbb{P}(X < \tau)^{H}\right)\right) \mathbb{E}(X \mid X \ge \tau) \\ &\geq \left(1 - \mathbb{E}\left(\mathbb{P}(X < \tau)^{H}\right)\right) \mathbb{E}(\mathrm{MAX}) \qquad (\mathsf{def. } \tau) \\ &\geq \left(1 - \mathbb{E}\left(\mathbb{P}(X < \tau)^{G}\right)\right) \mathbb{E}(\mathrm{MAX}) \qquad (H \in \mathcal{G}) \\ &\geq \left(1 - \mathbb{E}\left((1 - 1/\mu)^{G}\right)\right) \mathbb{E}(\mathrm{MAX}) \qquad (\mathsf{def. } \tau) \\ &= \left(\frac{\mu^{2}}{\mu^{2} + \sigma^{2}} \left(1 - \left(1 - \frac{1}{\mu}\right)^{\frac{\mu^{2} + \sigma^{2}}{\mu}}\right)\right) \mathbb{E}(\mathrm{MAX}) \qquad (\mathsf{def. } G) \end{split}$$

Back to the example

Notice that H is such that

$$\mu = \frac{39}{20} = 1.95$$

 $\sigma^2 \approx 1.36$

Therefore, using τ such that $\mathbb{P}(X \ge \tau) = 1/\mu$, we guarantee that

$$\frac{\mathbb{E}(\mathrm{ALG}_{\tau})}{\mathbb{E}(\mathrm{MAX})} \geq \frac{\mu^2}{\mu^2 + \sigma^2} \left(1 - \left(1 - \frac{1}{\mu}\right)^{\frac{\mu^2 + \sigma^2}{\mu}}\right) \approx 0.588$$

Notice that H is in the G-class, and $\mu = 1.95$. Therefore, using the same threshold τ such that $\mathbb{P}(X \ge \tau) = 1/\mu$, we guarantee that

$$rac{\mathbb{E}(\mathrm{ALG}_{ au})}{\mathbb{E}(\mathrm{MAX})} \geq rac{1}{2-1/\mu} = rac{39}{58} pprox 0.672$$

Instead of a fixed threshold, we can study other algorithms.

For example, a variant of the secretary algorithm achieves a constant factor in instances where fixed threshold does not.

On which class of horizons we have that simple adaptive algorithms achieve a constant factor?

Thank you!

Raimundo Saona IID Prophet Inequality with Random Horizon