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IID Prophet Inequality, with Random Horizon

Consider the following random horizon.

H =


1 w.p. 1/2

2 w.p. 1/4

3 w.p. 1/20

4 w.p. 1/5

Consider iid positive values Xi ∼ X .
We would like to bound

sup
ALG

E(ALG)

E(MAX)
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Dynamic

1 Draw a horizon H and variables X1,X2, . . . ,XH .

2 At each step i , if i ≤ H, then observe Xi .

3 Decide whether to take Xi or not.
If you take it, the process end.
If you do not take it, the process continuous.

A decision rule defines ALG.
The benchmark is the offline maximum MAX.
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Assumptions

Finite value expectation: E(X ) < ∞

Finite horizon expectation: µ := E(H) < ∞

All variables are independent of each other

Talk simplicity: X is a continuous distribution

Under these assumptions,

E(MAX ) ≤ E

(
H∑
i=1

Xi

)
≤ E(H)E(X ) = µE(X ) < ∞ .
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Previous Results

Theorem

If H ≡ h, then there exists a threshold τ ∈ R such that

E(ALGτ )

E(MAX)
≥
(
1− 1

e

)
≈ 0.632

and the bound is tight considering single-threshold algorithms.

In this proof, the threshold τ is defined by

P(MAX ≤ τ) =
1

e
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Previous Results 2

Define the Hazard rate of a random variable H by

λ(h) := P(H = h |H ≥ h) =
P(H = h)

P(H ≥ h)

taking the value 1 when it is not defined.

Theorem

If H is such that λ(·) is increasing,
then there exists a threshold τ ∈ R such that

E(ALGτ )

E(MAX)
≥ 1

2− 1/µ

and the bound is tight considering all algorithms.

In this proof, the threshold τ is defined by

P(X ≥ τ) =
1

µ
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Technical parenthesis: Optimal algorithm

For H with bounded support,
backward induction defines the optimal algorithm.

For H with unbounded support,
backward induction is not defined.
Because E(H) < ∞, approximate the instance by min{H, n}.
For time i , consider the increasing sequence of thresholds (τi ,n)n≥1.
The optimal algorithm is given by thresholds τ∗i := limn→∞ τi ,n.

Raimundo Saona IID Prophet Inequality with Random Horizon



Example

Recall our example

H =


1 w.p. 1/2

2 w.p. 1/4

3 w.p. 1/20

4 w.p. 1/5

The hazard rate is given by

λ =

[
1

2
,
1

2
,
1

5
, 1, 1, . . .

]
In particular, this example is not covered by previous results.
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Result: Concentrated Horizon

Theorem (Concentrated horizons)

If σ2 := Var(H) < ∞, then there exists τ such that

E(ALGτ )

E(MAX)
≥ µ2

µ2 + σ2

1−
(
1− 1

µ

)µ2+σ2

µ

 .

In particular, fixing σ2 and taking µ → ∞,
we extend the factor the factor (1− 1/e)
from fixed to low variance horizons.

Raimundo Saona IID Prophet Inequality with Random Horizon



Result: Reliable Horizon

Definition (G-class)
A horizon H is in the G-class if,
for all t ∈ (0, 1),

E(tH) =
∑
i≥0

P(H = i)t i ≤ t

t + (1− t)µ
.

Theorem (Better than geometric)

If H is in the G-class, then there exists τ such that

E(ALGτ )

E(MAX)
≥ 1

2− 1/µ
.
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Technique

The general proof is the following.

E(ALGτ ) = E
(
1− P(X < τ)H

)
E(X |X ≥ τ)

=
(
1− E

(
P(X < τ)H

))
E(X |X ≥ τ)

≥
(
1− E

(
P(X < τ)H

))
E(MAX) (def. τ)

≥
(
1− E

(
P(X < τ)G

))
E(MAX) (def. G )

= cG E(MAX)

where cG is a factor defined by the distribution of G and
G is another random variable such that, for all t ∈ (0, 1)

E(tH) ≤ E(tG )
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Threshold for MAX

Lemma

Consider a continuous random variable X and
a horizon H with expectation µ < ∞.
Define the the threshold τ by P(X ≥ τ) = 1/µ.
Then,

E(MAX) ≤ E(X |X ≥ τ)
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Threshold for MAX, proof

Note that, for all x ,

fMAX(x) ≤ µfX (x) .

Define the optimization problem

max
f

∫ ∞

0
xf (x)dx

s.t.

∫ ∞

0
f (x)dx ≤ 1

f (x) ≤ µfX (x) ∀x
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Threshold for MAX, proof 2

Its solution is to put as much mass in high values as possible, i.e.

f ∗(x) =

{
µfX (x) x ≥ x∗

0 ∼

and the threshold x∗ is given by f ∗ being a density, i.e., x∗ = τ ,
so that ∫ ∞

0
f ∗(x)dx = µ

∫ ∞

τ
fX (x)dx = µP(X ≥ τ) = 1

Then,

E(MAX) ≤
∫ ∞

0
xf ∗(x)dx = µ

∫ ∞

τ
xfX (x)dx = E(X |X ≥ τ) .
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G-class

Definition (G-class)
A horizon H is in the G-class if,
for all t ∈ (0, 1),

E(tH) =
∑
i≥0

P(H = i)t i ≤ t

t + (1− t)µ
.

Note that, if G ∼ Geo(1/µ), then

E(tG ) =
t

t + (1− t)µ
.

The discounted cost of a failure ∼ H is less than a failure ∼ G ,
for all discount factors.
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G-class is big

The following classes of random horizons are nested.

1 Increasing Hazard Rate (IHR)

2 IHR in expectation

3 Harmonically IHR in expectation

4 Better New than Used (BNU)

5 BNU in expectation

6 Harmonically BNU in expectation

7 G-class (more reliable than a geometric)
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Reliable Horizon, proof

E(ALGτ )

=
(
1− E

(
P(X < τ)H

))
E(X |X ≥ τ)

≥
(
1− E

(
P(X < τ)H

))
E(MAX) (def. τ)

≥
(
1− E

(
P(X < τ)G

))
E(MAX) (H ∈ G)

=

(
1− P(X < τ)

P(X < τ) + (1− P(X < τ))µ

)
E(MAX) (def. G )

=

(
1− 1− 1/µ

1− 1/µ+ (1− (1− 1/µ))µ

)
E(MAX) (def. τ)

=

(
1

2− 1/µ

)
E(MAX)
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Concentrated Horizon, proof

Consider a horizon H such that σ2 := Var(H) < ∞. Define

G ∼ µ2 + σ2

µ
Ber

(
µ2

µ2 + σ2

)
.

Then, for all t ∈ (0, 1),

E(tH) ≤ E(tG ) .
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Concentrated Horizon, proof 2

E(ALGτ ) =
(
1− E

(
P(X < τ)H

))
E(X |X ≥ τ)

≥
(
1− E

(
P(X < τ)H

))
E(MAX) (def. τ)

≥
(
1− E

(
P(X < τ)G

))
E(MAX) (H ∈ G)

≥
(
1− E

(
(1− 1/µ)G

))
E(MAX) (def. τ)

=

 µ2

µ2 + σ2

1−
(
1− 1

µ

)µ2+σ2

µ

E(MAX) (def. G )
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Back to the example

Notice that H is such that

µ =
39

20
= 1.95

σ2 ≈ 1.36

Therefore, using τ such that P(X ≥ τ) = 1/µ,
we guarantee that

E(ALGτ )

E(MAX)
≥ µ2

µ2 + σ2

1−
(
1− 1

µ

)µ2+σ2

µ

 ≈ 0.588
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Back to the example

Notice that H is in the G-class, and µ = 1.95.
Therefore, using the same threshold τ such that P(X ≥ τ) = 1/µ,
we guarantee that

E(ALGτ )

E(MAX)
≥ 1

2− 1/µ
=

39

58
≈ 0.672
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Future work

Instead of a fixed threshold, we can study other algorithms.

For example, a variant of the secretary algorithm achieves
a constant factor in instances where fixed threshold does not.

On which class of horizons we have that
simple adaptive algorithms achieve a constant factor?
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Thank you!

Raimundo Saona IID Prophet Inequality with Random Horizon


